近代科学社

書籍検索
ジャンル選択

情報

ベイズ最適化ー適応的実験計画の基礎と実践ー

著者 今村 秀明
著者 松井 孝太

【ベイズ最適化を1から理解して実践できる!】

 科学研究において実験計画は必須になりますが、近年ではデータを使って仮説の生成と検証を繰り返す「適応的実験計画」が取り入れられ、その方法の一つである「ベイズ最適化」に注目が集まっています。
 本書ではこのベイズ最適化の理論・アルゴリズムを基礎から応用まで詳細に説明しています。またブラックボックス最適化ソフトウェア「Optuna」を利用したアルゴリズムの実装方法も紹介。本書を読むことで、ベイズ最適化という強大なフレームワークの全貌を理解し、理論と実装を習得することができます。

電子書籍¥3,800 小売希望価格(税別)

紙の書籍¥3,800定価(税別)

基本情報

発売日 2023年8月25日
ページ数 316 ページ ※印刷物
サイズ A5
ISBN 9784764906631
ジャンル 情報
タグ 機械学習・深層学習
電子書籍形式 固定型

主要目次

第1章 機械学習による適応的実験計画とベイズ最適化
1.1 データ駆動型実験科学とベイズ最適化
1.2 ブラックボックス最適化とハイパーパラメータ最適化
1.3 ベイズ最適化

第2章 ブラックボックス関数のベイズモデリング
2.1 ベイズ線形回帰モデル
2.2 ガウス過程回帰モデル

第3章 ベイズ最適化のアルゴリズム
3.1 はじめに
3.2 改善確率量獲得関数
3.3 期待改善量獲得関数
3.4 信頼下限獲得関数
3.5 トンプソン抽出獲得関数
3.6 エントロピー探索獲得関数
3.7 予測エントロピー探索獲得関数
3.8 ベイズ最適化の終了条件
3.9 出力の生成方法
3.10 ハイパーパラメータの取り扱い

第4章 Optuna によるベイズ最適化の実装方法
4.1 Optuna とは
4.2 Optuna の基礎的な使い方
4.3 Optuna におけるベイズ最適化
4.4 BoTorchSampler の基礎的な使い方
4.5 BoTorchSampler の発展的な使い方
4.6 Optuna の発展的な使い方

第5章 制約付きベイズ最適化
5.1 制約付き最適化とは
5.2 制約付き最適化の問題設定
5.3 制約を考慮した目的関数のモデリング
5.4 制約付き期待改善量
5.5 制約付き予測エントロピー探索

第6章 多目的ベイズ最適化
6.1 多目的最適化とは
6.2 多目的最適化の問題設定
6.3 多目的最適化における目的関数のモデリング
6.4 期待超体積改善量

第7章 高次元空間でのベイズ最適化
7.1 高次元空間上でのベイズ最適化の課題
7.2 目的関数の加法的分解に基づく方法
7.3 入力空間の次元削減に基づく方法
7.4 局所的なモデリングに基づく方法

第8章 並列ベイズ最適化
8.1 並列最適化とは
8.2 並列最適化における問題点
8.3 嘘つき法
8.4 局所ペナルティ法
8.5 モンテカルロ獲得関数

付録
A.1 数理最適化と勾配法の基礎
A.2 ブラックボックス最適化のための種々の方法

目次をさらに表示する

サポート

詳細情報はこちら