情報
Pythonによる問題解決シリーズ 第3巻
最適化のための強化学習
【強化学習を使った最適化手法をゼロから理解する!】
本書では、強化学習における基本的な考え方や計算手法を紹介し、実際にPython を用いて実現する方法をまとめている。具体的にはマルコフ決定過程、価値関数、方策評価、方策反復、価値反復、モンテカルロ評価、SARSA、Q学習を扱う。ほとんどの内容は簡単な数学の知識があれば問題なく理解できるよう記述し、読者の学びやすさを優先して繰り返しの説明や既出の数式を再掲するなど工夫している。Pythonの基礎から強化学習の利用までを詳細に解説した充実の一冊。
電子書籍¥3,520 小売希望価格(税込)
紙の書籍¥3,520定価(税込)
基本情報
発売日 | 2024年9月30日 |
---|---|
本体価格 | 3,200円 |
ページ数 | 204 ページ ※印刷物 |
サイズ | B5 変形 |
ISBN | 9784764907102 |
ジャンル | 情報 |
タグ | 情報処理, Python, 機械学習・深層学習 |
電子書籍形式 | 固定型 |
主要目次
第1章 Python で強化学習を行うための環境構築
1.1 オンラインサービスを利用する方法
1.2 手元のコンピュータに実行環境を整える方法
1.3 パッケージのインストール
1.4 実行環境
第2章 Pythonの基礎
2.1 データ構造
2.2 科学技術計算パッケージNumPy
2.3 条件分岐
2.4 繰り返し処理
2.5 可視化ライブラリMatplotlib
2.6 関数
2.7 内包表記
第3章 強化学習
第4章 マルコフ決定過程
4.1 マルコフ性
4.2 推移確率行列
4.3 マルコフ過程
4.4 マルコフ報酬過程
4.5 リターン
4.6 価値関数
4.7 方策
4.8 マルコフ決定過程
第5章 動的計画
5.1 例1: 整数の和
5.2 例2: 最短路問題
5.3 動的計画による価値関数の評価
5.4 方策評価
5.5 方策改善
5.6 方策反復
5.7 価値反復
第6章 モンテカルロ学習
6.1 全幅探索とサンプル探索
6.2 モンテカルロ方策評価
6.3 First-visit モンテカルロ方策評価
6.4 Every-visit モンテカルロ方策評価
6.5 平均の増分計算
第7章 Temporal Difference 学習
7.1 TD(0) 学習
7.2 オンポリシー学習とオフポリシー学習
7.3 オンポリシーモンテカルロ学習
7.4 オンポリシーTD 学習- SARSA
7.5 オフポリシーTD 学習- Q学習