『代数トポロジーの基礎』(近代科学社 Digital 刊, 2021 年 version1.0~1.2) 正誤表

version	ページ, 行など	誤	Œ
1.0 - 1.1	p.27, 問題 1.2.4	$\bigcup_{i=1}^m A_i$	$\bigcup_{m=1}^{m}A_{i}$
		i=0	i=1
1.0 - 1.2	p.32, 注意	$\mathbb{R}^n - \{0\} \cong \mathbb{R}^{n-1} \times \mathbb{S}^n$	$\mathbb{R}^n - \{0\} \cong \mathbb{R} imes \mathbb{S}^{n-1}$
1.0	p.35, (対称律)	$y \sim y$	$y \sim x$
1.0 - 1.1	p.37, 下から 1 行目	$V \cup \{(x,1) \in X \mid \frac{1}{4} < x < \frac{3}{4}\}$	$V \cup \{(1,y) \in X \mid \frac{1}{4} < y < \frac{3}{4}\}$
1.0	p.39, 7 行目	$f=ar{f}\circ p$ lt	$p: X \longrightarrow X/\sim_1 = Y$ を自然な射影とすると, $f = \bar{f} \circ p$ は
1.0	p.39, 下から 7 行目	存在する。が成り立つ。	存在する。
1.0	p.43, 4 行目	コンパクト性の定義	コンパクトの定義
1.0 - 1.2	p.51, 定義 1.6.1 (DC3)	$V = \varnothing$	$V \neq \varnothing$
1.0	p.55, 補題 1.6.15(1)	f(1-t)	$\alpha(1-t)$
1.0	p.61, 補題 1.7.1①	$M \ lat{5}$	M $l\sharp$
1.0	p.61, 下から 2 行目	x における M の	$x \circ M$ における
1.0 - 1.1	p.77, 17 行目	$[\overline{lpha}*\gamma_1*f]$	$[\overline{\alpha} * \gamma_1 * \alpha]$
1.0 - 1.2	p.102, 図 (矢印の左側)	θ	$2\pi s$
1.0 - 1.1	p.118, 下から 12 行目	複雑な群表示を持つ場合 に操作であり	複雑な群表示を持つ場合 に有効な操作であり
1.0	p.119, 下から 11 行目	G を含むすべての	S を含むすべての
1.0 - 1.1	p.141, 定義 3.1.7	(k+1) 個の点	(k+1) 個の異なる点
1.0	p.142, 15 行目	$V(\sigma) - (V(\tau) \cup V(\tau'))$	$V(\sigma) - (V(\tau) \cap V(\tau'))$
1.0	p.142, 16 行目	ℤ-係数一次結合	一次結合
1.0	p.148, 3 行目	$\boldsymbol{x} = (1-s)\boldsymbol{a} + s\psi(\boldsymbol{x})$	$x = (1-s)a + s\psi(\varphi(x))$
1.0 - 1.2	p.148, 命題 3.2.6(ii)	x_1 の σ_1 における重心座標と x_2 の σ_2 における重心座標は一致する。	$q(K(\sigma_1)^{(0)}) = q(K(\sigma_2)^{(0)})$ であり、その順序を一つ 指定したとき、 x_1 の σ_1 における重心座標と x_2 の σ_2 における重心座標は一致する。
1.0 - 1.2	p.173, 11 ~ 12 行目	$B_1(K)$	$B_0(K)$
1.0	p.173, 下から 5 行目	$C_0(K)$	$C_1(K)$
1.0 - 1.2	p.174, 下から 3 行目	$\langle a_3 angle$	$\langle a_2 angle$
1.0	p.177, 15 行目	$\varepsilon(\langle \sigma \rangle) = 0$	$\varepsilon(\partial_1\langle\sigma\rangle)=0$
1.0	p.179, 6 行目	$\langle a, a_0, \dots, a_k \rangle$	$\langle a, a_0, \dots, \widehat{a_i}, \dots, a_k \rangle$
1.0	p.183, 3 行目	$K_k(L)$	$H_k(L)$
1.0	p.184, 13 行目	$\langle a_0 \rangle - \langle a_1 \rangle \in B_1(L)$	$\langle a_0 \rangle - \langle a_1 \rangle \in B_0(L)$
1.0	p.184, 13 行目	$B_1(K) = B_1(L)$	$B_0(K) = B_0(L)$

version	ページ, 行など	誤	正
1.0	p.185, 6 ~ 7 行目	1 次元単体複体 ことが わかる。	(ダブルので削除)
1.0 - 1.2	p.185, 下から 12 行目	$\langle a_5, a_0 \rangle$	$\langle a_5, a_3 angle$
1.0	p.189, 下から 2 行目	$L \xrightarrow{\overline{\eta \oplus \eta \ni \eta} \jmath \jmath J \lambda}$	L =
1.0	p.209, 定理 3.10.8	$\{(C_k'',\partial_k'')\}_{n\in\mathbb{Z}}$	$\{(C_k'',\partial_k'')\}_{k\in\mathbb{Z}}$
1.0 - 1.1	p.215, 定理 3.11.3 見出し	Virtoris	Vietoris
1.0 - 1.1	p.236, 15 行目	$\delta(\sigma_1) + \delta(\sigma_2)$	$\operatorname{diam}(\sigma_1) + \operatorname{diam}(\sigma_2)$
1.0 - 1.1	p.241, 下から 11 行目	$U((x; \frac{l+1}{N}), \rho)$	$U((x, \frac{l+1}{N}); \rho)$
1.0 - 1.1	p.241, 下から 10 行目	$(x, \frac{l}{N}), \rho)$	$(x,rac{l}{N})$
1.0 - 1.1	p.248, 下から 11 行目	全順序	順序
1.0 - 1.1	p.250, 下から 6 行目	$\overline{\partial}_{k+1} \circ D_k)$	$(\overline{\partial}_{k+1} \circ D_k)$
1.0 - 1.1	p.263, 下から 2 行目	$f \circ \overline{f^{-1}} = \mathrm{id}, \overline{f^{-1}} \circ f = \mathrm{id}$	$\overline{f} \circ \overline{f^{-1}} = \mathrm{id}, \overline{f^{-1}} \circ \overline{f} = \mathrm{id}$

- version 1.0 1.2, p.140 の重心座標の定義の後に、以下の説明を追加: 重心座標は単体の頂点の順序に依存するため,正確には " a_0, a_1, \ldots, a_n " に関する重心座標と記述する必要がある。
- version1.0, p.149 の ∵ の中の 4 行目の「重心座標は一致する。」と「(ii) より,」の間に 以下の説明を追加:

 $au_i \in L'$ を $K(au_i)^{(0)} = \varphi \big(K(\sigma_i)^{(0)} \big)$ (i=1,2) を満たすものとすると, $\overline{\varphi}_{\sigma_i}$ の定義より $\overline{\varphi}_{\sigma_i}(x_i) \in \operatorname{Int} au_i$ となる。したがって, $\operatorname{Int} au_1 \cap \operatorname{Int} au_2 \neq \varnothing$ であり、補題 3.2.3(2) により $au_1 = au_2$ である。これは $q\big(K(\sigma_1)^{(0)} \big) = q\big(K(\sigma_2)^{(0)} \big)$ であることを意味する。

謝辞 version1.0 に対する正誤表の誤植箇所については、「幾何学1」の受講生・松本優希氏から教えてもらったものが多くあります。特に、命題3.2.6 の主張と証明の不備は彼からの質問と指摘により気がつきました。ここに記して感謝申し上げます。また、城西大学の神島芳宣先生にはゼミナールで本テキストを使っていただいた中で、気がつかれた誤植を教えていただきました。神島先生ならびにゼミナールの学生さんたちに感謝申し上げます。

謝辞 この正誤表の version1.1 に対する誤植と訂正の多くは、東京理科大学の佐藤隆夫先生と、佐藤先生の指導のもとでゼミナールで丁寧に読んでくださった大学院生の本間錠治ジェシー氏、学部生の朝倉七海氏、伊藤純弥氏、奥津一輝氏、幸元睦氏、前川翔太氏の6名からお寄せいただいたコメントに基づいています。また、卒業生の五條喜仁氏から、そして、昨年に引き続き、城西大学の神島芳宣先生ならびにゼミナールの学生さんたちからいただいたコメントも反映させていただいています。ここに記して感謝申し上げます。