【訂正一覧】『離散数学への入門』第一版訂正一覧

頁	行など	訂正前	訂正後
3	18 行目	反例 (counterexample)	反例 (counter example)
27	図 2.2 和 A∪B	U. B.	
28	式 (2.41)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup B)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
28	式 (2.42)	$A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
28	式 (2.46)	$A \cup A = U$	$A \cup \bar{A} = U$
28	式 (2.47)	$A \cap A = \phi$	$A\cap \bar{A}=\phi$
30	[2] (4)	1 桁の自然数 $\} \cup \{m m$	1 桁の自然数 $\} \cap \{m m$
38	1 行目	\ldots 。 X の部分集合 $A\in X$ に対し、 \ldots	\ldots 。 X の部分集合 $A\subset X$ に対し、 \ldots
39	6 行目	、2x+1=yとなる	、2x-1=yとなる
43	下から3 行目	。たとえば、 $X = \{1, 2, 3, 4\}$ 、 $Y = \{a, b, c\}$ 、 $Z =$	。たとえば、 $X = \{1, 2, 3, 4\}$ 、 $Y = \{a, b, c, d\}$ 、 $Z =$

頁	行など	訂正前	訂正後
44	2 行目	$h = \begin{pmatrix} 1234\\1010 \end{pmatrix}$	$h = \begin{pmatrix} 1234 \\ 1000 \end{pmatrix}$
45	コラム	訂正一覧 p.5 をご参照ください。	
53	下から 14 行目	\dots 部分集合を $N_i \subset \mathcal{P}(N)$ とすると、 \dots	…部分集合を $N_i \in \mathcal{P}(N)$ とすると、 …
59	下から 14行目	$\mathrm{W} \in B_1$ ならば、	$W \in B_1$ ならば、
71	式 (5.5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
85	[14] (2)	…推移的関係とする。 $(a,b)\in R$ かつ…	…推移的関係とする。任意の a,b について、 $(a,b) \in R$ かつ…
85	[14] (3)	…であるとする。もし、 $(a,b) \in R$ か つ…	…であるとする。任意の a,b,c について、もし、 $(a,b)\in R$ かつ…
117	下から 7 行目	なお、置換の積については、3 章のコ ラムを参照されたい。	なお、置換の積は右から評価する。 3 章のコラム (p. 45) を参照された い。
129	[13] (3)	$\begin{pmatrix} 1234 \\ 1234 \end{pmatrix}, \begin{pmatrix} 1234 \\ 4321 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2143 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2143 \end{pmatrix}, \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}$	$\begin{pmatrix} 1234 \\ 1234 \end{pmatrix}, \begin{pmatrix} 1234 \\ 4321 \end{pmatrix}, \begin{pmatrix} 1234 \\ 2143 \end{pmatrix}, \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}$
136	図 8.6	{{1, 2, 3}} {{1, 2}, {3}} {{1, 3}, {2}} {{1, 3}, {2}} {{1}, {2}, {3}}	{{1, 2, 3}} {{1, 2}, {3}} {{1, 3}, {2}} {{2, 3}, {1}} {{1}, {2}, {3}}
137	式 (8.12)	下界 Lower $(A) = \{v v \in X, \forall x \in A \ v \ge x\}$	下界 Lower $(A) = \{v v \in X, \forall x \in A \ x \ge v\}$
149	[15]	…において、次のべき等律…	…において、べき等律…
152	6 行目	…と呼ぶが、どちらもグラフという ことが…	…と呼ぶが、どちらも単にグラフと いうことが…

頁	行など	訂正前	訂正後
156	下から 5 行目	を付けて上位節点を	ラベルを付けて上位ラベル節点を
163	下 から 14 行目	すべての節点が…	すべての節点が…(行頭の空白を取る)
168	下から 4 行目	正任意の凸多面対	任意の正凸多面対
169	1~2 行 目	\dots 。 n -cube は、 $2n$ 個の長さ n のビット列を節点とし、 \dots	。 n -cube は、長さ n のビット列 2^n 個を節点とし、
190	図	I saw a man on the hill with a telescope.	I saw a man on the hill with a telescope.
197	[1] (9)	、授業に遅刻した。(9) 授業に	、授業に遅刻した。(10)授業に
197	[2] (4)	$(4) p \wedge r \wedge \sim r (5) \sim q \wedge \sim (p \to q)$	(4) $p \land q \land \sim r$ (5) $\sim q \land \sim (p \to r)$
197	[3] (5)	…を論文の集合として、 $\forall x p(x) \rightarrow q(x)$ 他は省略。	…を論文の集合として、 $\forall x \ p(x) \to q(x)$ あるいは $\forall x \sim q(x) \to p(x)$ 他は省略。
197	[5]	[4]の「風と桶屋」の各命題につい て、次の問に答えよ。	左記文章をすべて削除
197	[5] (1)	… [4] のうちこのとき、真となるの は、(2),(4) の 2 つ。	… [4] のうちこのとき、真となるの は、(2),(4),(5)の3つ。
197	[6]	[4]の「風と桶屋」のそれぞれの命題について、その否定をわかりやすく説明せよ。	左記文章をすべて削除

頁	行など	訂正前	訂正後
197	[6] (1)	$\sim (p ightarrow q) = p \lor \sim q$ であるから、 " 風が吹くか桶屋がもうからないか どっちかだ "	$\sim (p ightarrow q) = p \land \sim q$ であるから、 "風が吹いても桶屋がもうからない"
198	[11] (1)	x eq 0 かつ $y = 0$ ならば	x eq 0 かつ $y eq 0$ ならば
199	[2] (2)	$B = \{1, 2, 3, \{\phi\}\}\$	$B=\{1,2,3,\phi\}$
199	[3] (3)	$C = \{z m, n \in N,$	$C = \{z m \in N, n \in N,$
199	下から 12 行目	[11] 問題中の言明は、	[11] 問題中の説明は、
200	9 行目	$= (A \cup B) \cap (A \cup B) \blacksquare$	$= (A \cup B) \cap (A \cup C) \blacksquare$
200	[14] (1)	ならば、 $(p(a) \lor q(a) = T$	ならば、 $p(a) \lor q(a) = T$
200	[18] (1) (a)	{1,2,7}	{1,2,6,7}
201	[11]	(3) 対応 (4) 全単射	(3) 対応 (4) 対応 (5) 全単射
202	[21] (5)	これは、…写像の集合を $ar x$ とすると全射の数は $ \bigcap_{x\in B}ar x $ となる。…、容易に得られる。	(これは、…写像の集合を Fx とすると、 \overline{Fx} は x を必ず含む写像の集合だから全射の数は $ \bigcap_{x\in B}\overline{Fx} $ となる。…、容易に得られる。)
203	[7] (1)(c)	よって、任意の n について、	よって、任意の n について、
203	[7] (3)	$b_n/2a_n < 1$ 、したがって、 b_{n+1} は	$b_n/2a_n = (1/2)(1-\sqrt{2}/a_n) < 1/2$ 、 したがって、 b_{n+1} は
203	[10] (2)	$\{2n n \ge 0$ の整数 $\}$	$\{2^n n\geqq0$ の整数 $\}$
204	[4] 1 行目	…説明で良い。 $a,b,c\in A$ とする。	… 説 明 で 良 い。任 意 の 要 素 を $a,b,c\in A$ とする。
205	10 行目	関係があれが、	関係があれば、
205	[17] 3 行目	$\in [a]$ とすると、 $(a,c) \in R_{ullet}$	$\in [a]$ とすると、 $(c,a) \in R_{ullet}$

頁	行など	訂正前	訂正後
207	8 行目	, (6), (7), (9), (11) _o	, (6), (7), (9), (10), (11),
207	下から 8 行目	(1 2) ((4 5)(2 3)	(1 2) (4 5) (2 3)
209	[2]	(1)(3)(4)順序関係 (2)順序関係でない ((0,1)と(1,0)の関係が	(1)(3)順序関係 (2)(4)順序関係でない ((2)では(0,1)と(1,0)の関係が
212	[21]	n-cube は 4 個の頂点から	n -cube は $2^2=4$ 個の頂点から
212	[21] 上 から 4 行目	n-cube は $2k$ 個の頂点	n -cube は 2^k 個の頂点
212	[21] 上 から 9 行目	2k+1 個の頂点	2^{k+1} 個の頂点

45 頁 コラム	誤	として、前者の解釈(本書の解釈)に基づくと、	
		$\alpha \beta = \begin{pmatrix} 12345 \\ 24351 \end{pmatrix} \begin{pmatrix} 12345 \\ 43251 \end{pmatrix} = \begin{pmatrix} 43251 \\ 53412 \end{pmatrix} \begin{pmatrix} 12345 \\ 43251 \end{pmatrix} = \begin{pmatrix} 12345 \\ 53412 \end{pmatrix}$	
		となる。後者の解釈では、次のようになる。	
		$\alpha \beta = \begin{pmatrix} 12345 \\ 24351 \end{pmatrix} \begin{pmatrix} 12345 \\ 43251 \end{pmatrix} = \begin{pmatrix} 12345 \\ 24351 \end{pmatrix} \begin{pmatrix} 24351 \\ 35214 \end{pmatrix} = \begin{pmatrix} 12345 \\ 35214 \end{pmatrix}$	
		このように、どちらの解釈をとるかで結果が異なる。	
	正	として、前者の解釈(本書の解釈)に基づくと、	
		$\alpha\beta = \begin{pmatrix} 12345 \\ 52413 \end{pmatrix} \begin{pmatrix} 12345 \\ 25134 \end{pmatrix} = \begin{pmatrix} 25134 \\ 23541 \end{pmatrix} \begin{pmatrix} 12345 \\ 25134 \end{pmatrix} = \begin{pmatrix} 12345 \\ 23541 \end{pmatrix}$	
		となる。後者の解釈では、次のようになる。	
		$\alpha\beta = \begin{pmatrix} 12345 \\ 52413 \end{pmatrix} \begin{pmatrix} 12345 \\ 25134 \end{pmatrix} = \begin{pmatrix} 12345 \\ 52413 \end{pmatrix} \begin{pmatrix} 52413 \\ 45321 \end{pmatrix} = \begin{pmatrix} 12345 \\ 45321 \end{pmatrix}$	
		このように、どちらの解釈をとるかで結果が異なる。	