工学
詳解 マテリアルズインフォマティクス有機・無機化学のための深層学習
化学の研究開発ではマテリアルズインフォマティクス(機械学習・深層学習を用いた新素材探索や新材料設計)の技術が導入され始めています。一方で、有機化学・無機化学のどの領域かによって構造情報の扱いや解析ノウハウが異なり、それぞれの場面で適切な手法が存在するという実情があります。本書では深層学習の基礎事項をはじめ、実際に深層学習を化学研究に利用する上での留意点を詳述するとともに、有機化学・無機化学分野でのデータの具体的な扱い方、さらには様々な深層学習手法とその具体的利用の理解を助けるための応用事例など、注目すべき多数の研究成果を体系的に整理しています。深層学習の初学者および具体的な応用研究を目指す方を対象に、データから様々な可能性を模索できるよう編集された一冊です。
※近代科学社Digitalのプリントオンデマンド(POD)書籍は、各書店の店舗でもご注文いただけます。受注生産となりますので、お届けまでに10日~14日ほどかかります。
電子書籍¥3,520 小売希望価格(税込)
ペーパーバック(カバーなし)¥3,520小売希望価格(税込)
単行本(カバーあり)¥3,520小売希望価格(税込)
基本情報
発売日(POD) | 2021年8月13日 |
---|---|
発売日(カバー付単行本) | 2024年1月31日 |
本体価格 | 3,200円 |
ページ数 | 290 ページ ※印刷物 |
サイズ | A5 |
ISBN(POD) | 9784764960237 |
ISBN (カバー付単行本) |
9784764906778 |
ジャンル | 工学 |
タグ | 計算科学, マテリアルズインフォマティクス, 近代科学社Digital |
電子書籍形式 | 固定型 |
主要目次
第1章 深層学習に必要なデータの準備
1.1 化学データに対する機械学習
1.2 有機化合物データ
1.3 無機化合物データ
第2章 深層学習のクイックレビュー
2.1 ニューラルネットワークの構造
2.2 ニューラルネットワークの訓練と正則化
2.3 深層生成モデル
2.4 その他の深層学習モデル
2.5 強化学習
第3章 有機化合物データを扱う深層学習
3.1 有機化合物データに対する前処理
3.2 少量データセットに対する対策
3.3 物性・活性の予測
3.4 有機反応の予測
3.5 有機分子の構造生成
第4章 無機化合物データを扱う深層学習
4.1 物性の予測
4.2 無機化合物の生成
第5章 有機化合物に対する深層学習の応用例
5.1 医薬品候補化合物の探索
5.2 有機高分子材料の探索
5.3 多成分系の化学物質の物性予測
第6章 深層学習を応用した無機材料の設計
6.1 物性予測モデルによる材料探索
6.2 生成モデルによる材料探索
第7章 化学における深層学習の課題・展望
7.1 利用可能なデータセットに関する問題
7.2 予測の不確実性
7.3 モデルの解釈
7.4 生成モデルの評価
1.1 化学データに対する機械学習
1.2 有機化合物データ
1.3 無機化合物データ
第2章 深層学習のクイックレビュー
2.1 ニューラルネットワークの構造
2.2 ニューラルネットワークの訓練と正則化
2.3 深層生成モデル
2.4 その他の深層学習モデル
2.5 強化学習
第3章 有機化合物データを扱う深層学習
3.1 有機化合物データに対する前処理
3.2 少量データセットに対する対策
3.3 物性・活性の予測
3.4 有機反応の予測
3.5 有機分子の構造生成
第4章 無機化合物データを扱う深層学習
4.1 物性の予測
4.2 無機化合物の生成
第5章 有機化合物に対する深層学習の応用例
5.1 医薬品候補化合物の探索
5.2 有機高分子材料の探索
5.3 多成分系の化学物質の物性予測
第6章 深層学習を応用した無機材料の設計
6.1 物性予測モデルによる材料探索
6.2 生成モデルによる材料探索
第7章 化学における深層学習の課題・展望
7.1 利用可能なデータセットに関する問題
7.2 予測の不確実性
7.3 モデルの解釈
7.4 生成モデルの評価