情報
Cによる理工系解析の数値計算―基礎からの展開―
【数値計算を基本から高機能なものまで、理解しやすい流れで解説!】
本書は、著者の長年の経験に基づき、理工系解析のために必要ないくつかの課題について、基本的な数値計算の方法とそれを行うためのプログラミングから学習し始め、それに基づいてより高機能な数値計算の方法とプログラミングについても学習できるような内容を目指して執筆されました。
取り上げている数値計算の課題は限定的かもしれませんが、それぞれの課題について演習課題として扱われるような基本的な数値計算に留まらず、研究や技術開発においても適用できる高機能な数値計算についても取り上げています。また、その方法を解説し、適用例とプログラミング言語の一つであるCによるプログラムを掲載しています。
本書を通じて、これらの一連のプログラミングの流れを理解し、少しでも効率的にプログラミングが行えるようになり、各自の学習、研究、および技術開発に幅広く本書を役立てていただくことができれば幸いです。
電子書籍¥4,000 小売希望価格(税別)
紙の書籍¥4,000小売希望価格(税別)
基本情報
発売日 | 2023年6月30日 |
---|---|
ページ数 | 344 ページ ※印刷物 |
サイズ | B5 |
ISBN | 9784764960602 |
ジャンル | 情報 |
タグ | 情報処理, プログラミング, C言語, 近代科学社Digital |
電子書籍形式 | 固定型 |
主要目次
第1章 基本的事項
1.1 はじめに
1.2 理工系解析の目的
1.3 解析対象の捉え方
1.4 モデリング
1.5 解析解と数値解
1.6 プログラミングと数値計算
1.7 本書の内容
第2章 連立一次方程式
2.1 はじめに
2.2 はき出し法
2.3 ガウスの消去法
2.4 LDU分解
2.5 左逆行列による最小二乗解の導出
2.6 右逆行列による最小ノルムの導出
2.7 特異値分解による最小二乗最小ノルム解の導出
2.8 二次計画法による最小二乗最小ノルム解の導出
第3章 多項式近似
3.1 はじめに
3.2 線形近似
3.3 多項式近似
3.4 固定区分多項式近似
3.5 二次計画法による多項式近似
3.6 二次計画法による固定区分多項式近似
第4章 非線形方程式
4.1 はじめに
4.2 割線法
4.3 ニュートン-ラフソン法
4.4 連立方程式への適用
4.5 ニュートン-ラフソン法の改良
4.6 改良版の連立方程式への適用
4.7 特異値分解の利用による拡張
4.8 二次計画法の利用による拡張
第5章 常微分方程式(初期値問題)
5.1 はじめに
5.2 オイラー法
5.3 ルンゲ-クッタ法
5.4 連立/高階微分方程式への適用
5.5 陰伏方程式への適用
5.6 混合微分代数方程式への適用
5.7 特異値分解の利用による拡張
第6章 常微分方程式(境界値問題)
6.1 はじめに
6.2 差分法
6.3 ガレルキン法/有限要素法
6.4 連立方程式への適用
6.5 初期値境界値問題への適用
第7章 変分法
7.1 はじめに
7.2 有限要素法
7.3 附帯条件付き変分問題への適用
7.4 媒介変数表示の適用
1.1 はじめに
1.2 理工系解析の目的
1.3 解析対象の捉え方
1.4 モデリング
1.5 解析解と数値解
1.6 プログラミングと数値計算
1.7 本書の内容
第2章 連立一次方程式
2.1 はじめに
2.2 はき出し法
2.3 ガウスの消去法
2.4 LDU分解
2.5 左逆行列による最小二乗解の導出
2.6 右逆行列による最小ノルムの導出
2.7 特異値分解による最小二乗最小ノルム解の導出
2.8 二次計画法による最小二乗最小ノルム解の導出
第3章 多項式近似
3.1 はじめに
3.2 線形近似
3.3 多項式近似
3.4 固定区分多項式近似
3.5 二次計画法による多項式近似
3.6 二次計画法による固定区分多項式近似
第4章 非線形方程式
4.1 はじめに
4.2 割線法
4.3 ニュートン-ラフソン法
4.4 連立方程式への適用
4.5 ニュートン-ラフソン法の改良
4.6 改良版の連立方程式への適用
4.7 特異値分解の利用による拡張
4.8 二次計画法の利用による拡張
第5章 常微分方程式(初期値問題)
5.1 はじめに
5.2 オイラー法
5.3 ルンゲ-クッタ法
5.4 連立/高階微分方程式への適用
5.5 陰伏方程式への適用
5.6 混合微分代数方程式への適用
5.7 特異値分解の利用による拡張
第6章 常微分方程式(境界値問題)
6.1 はじめに
6.2 差分法
6.3 ガレルキン法/有限要素法
6.4 連立方程式への適用
6.5 初期値境界値問題への適用
第7章 変分法
7.1 はじめに
7.2 有限要素法
7.3 附帯条件付き変分問題への適用
7.4 媒介変数表示の適用