Book List書籍一覧
近代科学社の取り扱ってる書籍一覧です
検索もご利用いただけます
-
近刊
最適化のための強化学習
【強化学習を使った最適化手法をゼロから理解する!】
本書では、強化学習における基本的な考え方や計算手法を紹介し、実際にPython を用いて実現する方法をまとめている。具体的にはマルコフ決定過程、価値関数、方策評価、方策反復、価値反復、モンテカルロ評価、SARSA、Q学習を扱う。ほとんどの内容は簡単な数学の知識があれば問題なく理解できるよう記述し、読者の学びやすさを優先して繰り返しの説明や既出の数式を再掲するなど工夫している。Pythonの基礎から強化学習の利用までを詳細に解説した充実の一冊。 -
近刊
スッキリわかる数理・データサイエンス・AI
【数理・データサイエンス・AI認定制度における応用基礎レベルをフォローした教科書!】
データサイエンス・AIの数学的な内容について詳細に説明し、紙と鉛筆だけで取り組める問題を数多く配置した教科書。各手法のアルゴリズムを学習と予測に分けて明示し、一般的な数学の教科書と同じように、概念の説明、例、問という構成で、章末には確認問題を掲載しています。
[問] 例の類題や概念の説明を補うための問題。
[確認問題] 章の内容を確認するための問題。データサイエンス検定やG検定などの検定を意識した4択問題もあり。
数理・データサイエンス・AI教育プログラム認定制度における「応用基礎レベル」から「エキスパートレベル」にステップアップするための必読書籍! -
NEW
ファーストステップ AI・データサイエンスの基礎
「数理・データサイエンス・AI /リテラシーレベル」に対応した新しいテキストが登場!
ファーストステップシリーズは、コンピュータを初めて本格的に学ぶ大学生・高専生を対象にしたものです。シリーズの中で、本書は、政府の「AI 戦略2019」によって、すべての大学・高専生が習得すべき「数理・データサイエンス・AI /リテラシーレベル」として策定されたモデルカリキュラム(2024 年2月改訂)に準拠した内容のテキストです。特に、コンピュータに関する学習をこれから始める文系学部の学生の皆さんにとっても、分かりやすく学んでいただけるように配慮しました。本書ではAI やデータサイエンスの知識や仕組みについて、事例や図解を使って具体的に説明しています。また、それらがどのように使われ、どんな有効性があるのか、反面、どんな問題があるのかについても示しました。AI・データサイエンスを1から学ぶためにこの上ない一冊です。
著者のスペシャルインタビューはこちら -
図解 深層学習
【豊富な図と数式のコンビで、深層学習の基本原理が直感的に理解できる!】
本書では「深層学習に使用する数学」について、意味を直感的に理解できるように図を多用することで式を補完する。第I部では深層学習についての基礎事項と次の部で使用する数学について、第II部ではニューラルネットワーク(深層学習)の中身について、第III部では深層学習の自動チューニングについてそれぞれ詳述。深層学習の実践・応用へステップアップするための基礎がじっくりと学べる、第一歩に相応しい一冊。
著者のスペシャルインタビューはこちら -
ベイズ最適化
【ベイズ最適化を1から理解して実践できる!】
科学研究において実験計画は必須になりますが、近年ではデータを使って仮説の生成と検証を繰り返す「適応的実験計画」が取り入れられ、その方法の一つである「ベイズ最適化」に注目が集まっています。
本書ではこのベイズ最適化の理論・アルゴリズムを基礎から応用まで詳細に説明しています。またブラックボックス最適化ソフトウェア「Optuna」を利用したアルゴリズムの実装方法も紹介。本書を読むことで、ベイズ最適化という強大なフレームワークの全貌を理解し、理論と実装を習得することができます。 -
機械学習
【"機械学習の本場”中国の標準教科書にしてベストセラー!】
原著は中国の数多くの大学や高専で使われている機械学習の標準教科書にして、2016年の刊行以来2020年11月までの発行数が54万部を超えるベストセラー書籍。
本書は大まかに基礎,具体的手法、先進的理論からなり、少ない数学的知識で読めて各章が短いという教科書的配慮がなされている。「スイカを切らずにその良し悪しを機械学習でどう判断するか?」が本書の骨子になっており、書影に描かれたスイカは本書のトレードマークとなっている。
中国はいかにして機械学習の分野をリードするに至ったか、そのエッセンスを紐解く一冊。 -
世界標準MIT教科書 データアナリティクスのための機械学習入門
【ビジネスパーソン必見! データ分析に不可欠なAIスキルを最短で習得できる!】
本書は機械学習を実際のビジネスシーンに適用してデータ分析を行うための実践書である。機械学習そのものの解説というよりは、データ分析に不可欠な機械学習の手法を駆使してビジネスを予測的に改善する方法を解説していく。
具体的な適用事例を用いて説明がなされるため、読者は目的やケースに合った手法(アルゴリズム)や実際の適用方法などを効率的に身に付けることができる。原著はMITで使われている教科書であり、講義の目的に応じて章を選択可能。ビジネスで使えるデータ分析手法を最短で習得したい読者に役立つ一冊である。 -
Pythonでプログラミングして理解する 機械学習アルゴリズム
「機械学習」をPythonでプログラミングし、アルゴリズムの動きを理解しよう!
機械学習のプログラムは様々なライブラリ・モジュールを使うことで簡単に試すことができる。その反面、単にモジュールを使用するだけでは機械学習の中のアルゴリズムがブラックボックス化してしまい、計算結果の意味を正しく捉えることも難しくなってくる。
本書ではまず「機械学習」のアルゴリズムを解説し、機械学習の動きをPythonで実際にプログラミングすることで、アルゴリズムの流れが理解できるよう構成している。まずは黎明期からの機械学習アルゴリズムを理解し、それを実装することが目標となる。
さらにPython用の機械学習モジュールの使用法も解説し、これらを使用したプログラムの作成も行う。機械学習を使いこなすためのイントロダクションとなる1冊。 -
はっきりわかるデータサイエンスと機械学習
「なぜ」を導くデータサイエンスでAIの透明化を実現する!
AIの要である機械学習は、結果を導き出す過程がブラックボックス化する問題があり、AI実用化の障害となっている。その解決策として、丹念なデータ分析によりデータの背景にある現象を統計モデルで表現する、本来の意味での「データサイエンス」の活用が期待されている。メカニズムが理解可能なモデルをAIの頭脳に使うことで、AIの透明化――すなわち説明可能なXAIも実現できる!
本書ではデータサイエンスの考えに基づく統計モデリングの解説に加え、機械学習の代表的な手法を Rを用いて体験していく。本書を読み込めば、探索的データ解析と機械学習、それぞれの本質を学ぶことができる。 -
アンサンブル法による機械学習
機械学習の精度をはるかに高める!
アンサンブル学習法は,深層学習に続く次のトレンドとして注目され,ブースティングやバギングなどの代表的な方法で複数の学習器を訓練し,それらを組み合わせて利用するという,最先端の機械学習法である.単一の学習法に比べてはるかに精度の高いことが知られており,実際に多くの場面で成功を収めている.
本書は,機械学習の分野で世界をリードしているZhi-Hua Zhou著の邦訳である.1章アンサンブル法の背景となる知識をあつかう.2章から5章は,アンサンブル法の核となる知識を扱い,5章では最近の情報理論多様性と多様性生成について議論する.6章からは,高度なアンサンブル法について述べる.人工知能,機械学習にたずさわる,研究者,技術者,学生には,必読必携の書である.